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Rigidly rotating charged dust distribution in general 
relativity 

S K Chakraborty and N Bandyopadhyay 
Physics Department, Presidency College, Calcutta, India 

Received 3 February 1983 

Abstract. Following two recent papers by Bonnor and Raychaudhuri on the motion of 
charged dust in general relativity, the authors obtain exact solutions of the Einstein- 
Maxwell equations in both cylindrically symmetric and axially symmetric cases. 

1. Introduction 

The present paper is a consequence of two recent papers by Ronnor (1980)  and 
Raychaudhuri (1982) .  Raychaudhuri investigated the motion of charged dust in 
general relativity under the specific assumptions of rigid motion and that the elec- 
tromagnetic potential vector (Aw)  and the velocity vector ( V ” )  of the dust are 
everywhere coincident in direction, i.e. A” = kV’, where k is a scalar. Without 
introducing any symmetry assumptions he reduced the Einstein-Maxwell equations 
to relations which seem comparatively easy to solve. The present paper is an attempt 
to solve one such set of equations corresponding to a vanishing Poynting vector, first 
in the case of cylindrical symmetry and then in the more involved case of axial 
symmetry. The solutions are obtained by utilising the fact that the equation system 
is underdetermined and hence one can append an ad hoc relation. 

2. The equation of the problem 

The equations to be solved are given below in the notation of Raychaudhuri (1982) :  

P / U  = ( 1  - k g ) / g  

 TU = ( 1  - kg)kjE - k ( g ’ + g 2  - f z /k2 )k , , k*”  
(2 .1 )  

(2 .2 )  

= { ( 1 - k g ) ’ - g Z + f 2 + ( 1  -kg)-’[g‘+gZ-(f2/2k2)-fzg/2k]}k,,k’” (2 .3 )  
4 d  - g 2 / ( 1  -kgl21 

fkl,’ = - ( f ’ + 2 f g - f / k ) k , , k q w  ( 2 . 4 )  

E ,  = ( 1  - k g ) k , ,  ( 2 . 5 )  
B ,  = f ( k ) k , ,  = -2kw, (2 .6 )  

( 2 . 7 )  V,;,V“ = V, = gk, ,  = A,,/A 
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where p and U are the matter density and charge density respectively, wcl  is the 
vorticity vector, E, and B,  are the electric and magnetic field vectors as seen by 
matter, f ( k )  and g ( k )  being functions of k ,  and the prime denotes differentiation with 
respect to k .  In equation (2.3) a minor correction in the corresponding equation in 
Raychauduri (1982) has been made. 

3. Solution of the equations in the case of cylindrical symmetry 

We take the line element in the cylindrical symmetric form 

ds2 = F dt’- e’*(dr2 +dz2)  + 2m dr$ dt - 1 dr$’ (3.1) 

F, I ,  m and (I, being functions of r alone. We number the coordinates t, r, z ,  r$ as 0, 
1, 2, 3 respectively. The coordinate system is assumed co-moving, i.e. 

V g  =AS: (3.2) 

where A is the same as in equation (2.7). The normalisation condition on V ”  gives 

F =  i / h 2 .  (3.3) 

Now, corresponding to (3.1), V 2  = V 3  = V o  = 0, which implies, because of (2.7), that k 
(and hence A )  is also a function of r alone. We then obtain w = w = w = 0 which 
implies from (2.6) 

1 3 0  

f =o ,  i.e. B,  = 0. (3.4) 

F = A m  where A is a constant of integration. (3.5) 

But then J T w ’  = $ V i  (m/F),l = 0 and so 

Again in view of (2.5) the only non-vanishing component of E, is El.  Now with 
vanishing B,  and S, (Poynting vector), the energy momentum tensor (Lich- 
nerowicz 1967) T r  = p V ” V ,  - ( 1 / 4 ~ ) [ ( &  - V”V,) (E2+B2)+(EsE,+B~B,)+ 
(V’S, + V,S”)]  gives T :  + T i  = 0 and hence because of Einstein’s field equations 
Rr = 8 ~ ( T r  - :TSr) ,  R: +Z?g = 0. We can then introduce Weyl canonical coordinates 
such that 

Fl + m 2  = r 2 .  (3.6) 

kj,” = { g (  1 - k g )  + g ’ [ g  + k (1 - k g ) ] / [ ( l -  k g I 2  - g’])k, ,k+.  

With f = 0, equation (2.4) is identically satisfied. Now from equations (2.1)-(2.3) 

(3.7) 
Keeping in mind that only the derivatives with respect to r do not vanish, equation 
(3.7) gives on integration 

rk,l =B[g2-(1 - k g ) 2 ] - 1 ’ 2  (3.8) 

(3.9) 

To obtain explicit integrals in terms of simple functions we utilise the freedom to 
introduce a relation between g and k, namely 

gk = c ( =constant). (3.10) 

where B is an arbitrary constant. Also from R: equation (van Stockum 1937) 

(~(I , , I ) , I  = {[r(g’+g’)(l -kg)l/[(l - k g ) 2 - g Z l } k ? l .  
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Then equation (3.8) gives 

c ) k  exp { ( l / c ) [ c 2 - ( l - c ) 2 k 2 ] 1 ’ 2 }  
r = D ( ( ‘ -  c + [ c 2 - ( l - c )  2 k 2 ] 1 /2  

where D is an arbitrary constant of integration. Again from (3.8)-(3.10) 

I) = l n ( a k ‘ r s )  

where a and S are constants of integration. 
The expression for matter density is 

B’(1-c)’ (1-c) ’k2-C(C +1) k 2 ( 1 - c )  
4lTp = a ( [c2-(1-c)  2 k 2 2 ) T  3 

and 

p / a  = [( 1 - c ) / c ] ~ .  

The metric components are given by (3.3), (3.5), (3.6) and (3.12) where 

A =Bk‘ 
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(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

p being an arbitrary constant of integration. 

4. Discussion of the nature of the solution in 0 3 

From (3.11), as k + O ,  r + k‘IB. We choose c / B  to be positive. Then r+O implies 
k + 0. Also since k 2  s c2 / (  1 - c)’, we have to cut off the solution at a finite value of 
r,  say rmax = D.  Of course, we can choose arbitrarily large values of D and hence the 
region of validity of the solution can be arbitrarily extended. Again from equation 
(3.12), e2@ = a2k2‘r2’.  Thus as r + 0 (i.e. k + 0) e” + r2 (B+s’  . If e’* is to remain finite 
at r = 0 ,  we must choose B + S  = O .  Also, from equation (3.131, 4 ~ p +  
-[(l - c ) ~ ( c  + l ) / ~ ~ ] ( B ~ / a ~ ) r ~ ( ~ - ~ )  as r + O .  Thus c must be negative such that c 5 -1. 
Also for p to remain finite at r = 0 we must have B = c. 

From equations (3.5) and (3.15) and the fact that B has been chosen to be negative, 
we must find m and F + 0 as r + 0. From equation (3.6) if I is to vanish as r + 0, we 
must choose B > -1. Thus, excepting the axis of symmetry, the solution obtained is 
regular up to arbitrarily large values of r .  

It may be of interest to note that the result that the magnetic field vanishes follows 
even in the more general case of V* = h ( S E  + S Y  + S ; ) .  This particular fact is a 
consequence of the assumptions A @  = k V @ ,  S” = 0 and the cylindrical symmetry of 
the line element. 

The solution obtained differs from that of Som and Raychaudhuri (1968), in that 
in their case the Lorentz force vanishes and hence the motion is geodesic, whereas 
in our case the motion is not geodesic, i.e. acceleration exists though expansion and 
shear vanish. 

Finally, since the vorticity vector vanishes, the velocity vector must be hypersurface 
orthogonal and the metric should be reducible to the static form, as is indeed possible 
by the transformation dt’ = dt + (1/A) d4 ,  in view of equation (3.5). 
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5. Solution of the equations in the case of axial symmetry 

The line element is again taken as in (3.1), but now F, I ,  m and i,b are considered as 
functions of both r and z. Equation (3.2) and, consequently, equation (3.3) is assumed 
to hold. A direct calculation now gives 

v,= v,=o. (5.1) 

Thus, in view of equation (2.7), k and A are also functions of r and z only. The 

0’ = -$(F/J<)(m/F),2 and w 2  = i ( F / J < ) ( m / F ) , l .  (5 .2)  

v -  1 
2 - -2F,2/F p -  - 

1 - -:F,i/F 

only surviving components of w are 

Thus equation (2.6) gives 

( F k / J G ) ( m l F ) , z  = fk . ’  (FklJ<)(m/F) , l  = - f k 3 2 .  (5.3) 
Equations (5.3) imply 

k , ~ ( m l F ) , ~  + k, l (m/F),1 = 0. 

Also, equations (5.1) and (2.7) yield 

(5.4) 

g k Z l  = -;F,‘/F and gk.2 = -iF,2/F. ( 5 . 5 )  
Now, we assume 

g k  = 2 (5.6) 
(note that (5.6) is a special case of (3.10)). Equations (5.5) and (5.6) give 

F = B 2 / k ,  (5.7) 

f = J k  -1 ( 5 . 8 )  

[ k / ( k 2 -  l)]k, ,k’”.  (5.9) 

B 2  being the integration constant. Also from equations (2.1), (2.2), (2.3) and (2.4) 
we get 

and 

2 

k:: = - 

Equation (5.9) can be converted into the following Laplace equation 

x.11 + x , z ~ + x . I ~ ~  = 0 
where 

x = i ( k J l k Z - l n l k  + J k  2. - 11) 

(5.10) 

(5.11) 

so that x is real only if k * 3 1. 
Different axially symmetric solutions may be obtained by a different choice of 

solution of equation (5.10). We now try to solve (5.10) by the method of separation 
of variables. Thus let 

x = R ( r ) Z ( z ) ,  
so that (5.10) may be written in the form 

R , I I / R  + R , l / r R  + z . ~ ~ / z  = O .  

Obviously we must have 
2 

z,22/z = a ( =constant) (5.12) 
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and 

For a # 0 equation (5.12) and (5.13) have the integrals 

RVl1jR +R,ljrR = -a2 .  

2 = B sinh(az) and R =AJo(ar) 
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(5.13) 

where Jo is Bessel's function of order zero and A and B are constants of integration. 
The complete solution of x is then given by 

x = PJo(ar) sinh(az) (5.14) 

where p = A B  = constant. 
Now from equation (5.3), the expression for m follows 

mk = -rpa-'Jb (ar) cosh(az) (5.15) 

where the prime indicates differentiation with respect to r,  and 1 can be found from 
the relation Fl+m2=r2 which still holds. The determination of I / /  is somewhat 
laborious. It involves appeal to the R: equation. We simply quote the result: 

e2* = k exp[-2P2Jo(ar)Jb (ar) sinh2(az)]. (5.16) 

The expression for density comes out as 

4 ~ p  = -[(4k4-9k2+3)/4(k2-1)21e-2*LCu21 + x ? 2 ) .  (5.17) 

6. Discussion of the nature of the solution in 0 5 

First of all we may note from (5.17) that, since density is to be non-negative, we must 
restrict the solution to the space region for which 

4k4-9kz + 3  s 0. 

This will happen when k 2  satisfies e - s k Z s e +  where e -  and e +  are the roots of 
4x - 9x + 3 = 0. The values of E -  and E +  are approximately 0.4 and 1.8, respectively. 
But since the condition of reality demands k 2  2 1, the range of k 2  is actually 1 C k 2 <  
E + .  At k 2  = 1, p becomes infinite, whereas at k 2  = e + ,  p becomes zero. When k 2  = 1, 
equations (5 .11)  and (5.14) show that for a finite z ,  r is the root of Jo(ar) = 0. When 
k2=E+,  the value of ,y increases from zero and so for the same L ,  r is less than its 
value for Jo(ar) = 0 as is evident from a consideration of the nature of Jo(ar) .  
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